skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Romanova, Mariya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce three developments within the stochastic many-body perturbation theory: efficient evaluation of off-diagonal self-energy terms, construction of Dyson orbitals, and stochastic constrained random phase approximation. The stochastic approaches readily handle systems with thousands of atoms. We use them to explore the electronic states of twisted bilayer graphene (tBLG) characterized by giant unit cells and correlated electronic states. We document the formation of electron localization under compression; weakly correlated states are merely shifted in energy. We demonstrate how to efficiently downfold the correlated subspace on a model Hamiltonian with a screened frequency-dependent two-body interaction. For the 6° tBLG system, the onsite interactions are between 200 and 300 meV under compression. The Dyson orbitals exhibit spatial distribution similar to the mean-field single-particle states. Under pressure, the electron-electron interactions increase in the localized states; however, the dynamical screening does not fully balance the dominant bare Coulomb interaction. 
    more » « less